
An investigation of a game generator tool to teach recursion

Shakeel Mohamed

CS Honours UCT

mhmsha056@myuct.ac.za

ABSTRACT

Recursion is an important and powerful computational problem-

solving tool however many students find it hard to understand

conceptually and hard to utilize in a practical coding environment

when applied to a problem. This literature review aims to

investigate a game generation software tool that can produce a

game, based on specific input parameters, which will serve as an

interactive and fun educational assignment generator to teach the

concept of recursion to those being introduced to the topic, with

particular focus on computer programming. Using a game as a form

of an alternative assignment may help facilitate the learning

experience and provide learners with a deeper and more intuitive

understanding of recursion. We aim to investigate the best way of

structuring a game that has a balance between actual programming

skills (ie. the ability to code recursively) and understanding given

recursive code. The purpose of the game is to promote the

understanding of the topic of recursion and encourage self-learning.

1. INTRODUCTION

Recursion is one of the most important programming concepts in

computer science. It allows the creation of extremely simple

algorithmic solutions to certain problems that would otherwise be

unsolvable or inefficient with any other type of approach. It is a

fundamental concept in computer science, whether understood as a

mathematical concept or programming technique [24]. It is

regarded as a challenging topic to learn for students being

introduced to the world of computer science. Educators often find

it a difficult topic to teach as well [18]. Most people are first

introduced to an iterative or loop based style of programming to

solve problems, which share many similarities with recursion and

this often bewilders the beginner. It’s applications in computer

programming cannot be understated and many students fail to grasp

the concept as it is taught in lectures and textbooks and thus may

find it difficult to cope with more advanced topics taught later in

many courses. Many classic examples are taught such as factorial,

Fibonacci numbers, towers of Hanoi and binary search. However

simply learning the code or algorithms do not promote or illustrate

the concept of recursive thinking in a visual or interactive way.

Visualization is a highly efficient method for demonstrating

difficult to learn concepts. It is well known that concrete conceptual

models are better than abstract conceptual models [23]. Being able

to see and understand when and how each recursive call is executed

can be invaluable to one’s understanding of recursion but this can

be taken further.

Using games to teach subjects and programming concepts is not

uncommon and has proven to be a fun and engaging way to

promote self -learning [3]. Teaching programming through a game

is something that has been explored however very few are specific

to recursion [21, 22, 3]. Few attempts have been made to gamify

the concept of recursion especially when the payoff for achieving

this can be tremendous [18]. Being able to easily teach such a

challenging topic and promote interest in it could substantially

reduce the initial confusion many people have and remove the

misconception that recursion is a daunting method of solving

problems where an iterative solution could be easier (and possibly

slower).

2. VISUALIZING RECURSION

Recursion is a method of problem-solving that involves the

decomposition of a problem into subproblem(s) of the same nature

until a base case is reached. The composition of these problems

solves the original. Many students fail to understand the “passive

flow” of recursion and the use of the stack for backtracking [11].

More specifically, they visualize recursion as a loop structure and

each recursive call as iteration, which is not true. It is well known

that visualization can play an important role in understanding

abstract concepts [23]. Visual analogies of recursion do exist and

research into real-life examples of recursion has been done as a

number of papers have been written in this regard. Examples such

as parking cars [1], delegating tasks [2] and the Cargo-Bot game

[3] aim to give context to recursion in the real world. Pirolli and

Anderson [4] claim that the lack of analogies for recursive

problems is what makes it difficult to learn. Kurland and Pea [5]

discovered that students often develop an incorrect mental model

of recursion through standard classroom and textbook learning.

Kahny and Eisenstadt [19] examined novices’ judgments of given

recursive programs and concluded that they developed one of

several mental models of recursion, which they named “copies”,

“loop”, “odd”, “null”, and “syntactic magic”. All of these models

except for the “copies model” are regarded as incorrect models of

recursion.

Many conceptual and concrete models have been used in

introducing recursion. Some have been listed below.

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

● Russian Dolls [6]. A Russian Doll can be taken apart into

many smaller dolls of the same shape. It illustrates the

process of taking a smaller version of itself (the problem)

until the base case is reached (the final doll that does not

contain another).

● Process Tracing. This approach focuses on tracing the

process generated by recursive functions.

● Stack Simulation [8]. Calls to functions are traced with

explicit reference to the system stack mechanism that is

used when implementing recursion in a programming

language.

● Mathematical Induction [9]. This approach introduces

recursion in terms of the mathematical basis for its

correctness. ie. Proof by induction.

● Structure Template [10]. This model provides novice

programmers with samples of recursive programs and

describes the base cases and recursive cases.

3. EDUCATION USING GAMES

There is an increasing interest and demand for games or elements

of games to support education. There is a “new” generation of

learners. By new generation we refer to those students who have

daily access to interactive 3D games and who spend a significant

amount of time exploring them. The gamification of education is a

topic that has sparked a lot of interest at all levels of education and

for good reason. Gamification, is the use of game design elements

in non-game contexts. The concept of gamification is different from

that of an educational or serious game. While the latter describes

the design of full-fledged games for non-entertainment purposes,

“gamified” applications merely employ elements of games. Games

promote self-learning, deeper understanding and exploration in the

topic. Oftentimes educators do not see games as a learning tool as

there is a stigma attached to it where games are simply a past-time

or a distraction. While this can be true, it has also been proven that

when incorporated into educational topics, games serve as a tool to

motivate learners to engage in the material taught to them [26]. The

current generation of learner wants to be challenged and often being

seated in a 45-minute lecture simply listening or reading a textbook

simply does not provide this [27]. It’s not interactive enough.

Games are empowering, motivating and value the efforts of the

player. It’s a platform for problem solving where a goal is clearly

defined and obtainable. The reward for completing the goal and

“beating” the game contributes to this engagement. Unfortunately,

creating highly engaging, full-blown instructional games can be

difficult, time consuming and costly [16]. For the field of computer

science however, there can be a big divide between the regular

assignments’ students receive where they are required to code in a

real IDE and games designed to teach programming which don’t

require any code at all such as Cargo-bot [3]. Because of this,

educational games remain as forms of extra practice rather than

alternative assignments. This wouldn’t usually be a problem but

students would more likely engage in material that has an effect on

their grades. Extra practice is something often disregarded.

4. GAMES AND PROGRAMMING

Animating the evaluation of programs, visual programming

languages and games to teach programming do exist and are known

to significantly help with the learning process [23], however games

to teach recursion specifically haven’t been explored. Designing

educational games requires a different focus than general game

design; otherwise, we may fall into the trap of designing fun games

with no learning value. Then the designers create the code that best

illustrates the target concept. Only after the concept and the target

code are designed do the designers begin to develop a game that

wraps the concept and the code in a game mechanic that works as

a metaphor for the entire game as well as the coding concept. After

the overall game concept is defined, the designers then tailor the

game instructions to support students in writing code and learning

concepts. Game instructions include both how to play and write in-

game code as well as educational instruction and information about

the game content. Scaffolding code, that is, pre-written code

provided to help students get started, is designed at this point as

well, although we try to limit the overall amount provided to reduce

complexity for introductory students [25]. The alternative is to

simply provide the entire recursive code and require the student to

interpret it correctly to solve the maze or puzzle presented to them,

which is a visual representation of the code provided. These test the

students understanding rather than their ability to write correct

code. A balance needs to be found between these.

Recent societal changes have caused both a need and an

opportunity for a new approach to teaching programming. The need

is caused by plummeting enrolments in computer science. Between

2000 and 2005 there has been a 60 - 70% reduction in incoming

freshman computer science majors [12]. This drop makes retention

especially important. The goal is thus to attract and retain majors

without “watering down” the technical content of CS classes.

Since the early 1990s there have been multiple efforts to use end

user video game creation in an effort to teach programming.

Examples of these game creation tools include Alice, Scratch, and

AgentSheets [13,14,15]. Scratch in particular is interesting as it

makes use of colourful coding “blocks” as opposed to actual textual

code, which is visually appealing. Users are able to intuitively

connect blocks to produce executable code. These blocks represent

various coding constructs such as loops and variables, but also

sprites and characters that can “act out” the code constructed.

MUPPETS (Multi-User Programming Pedagogy for Enhancing

Traditional Study) is a game where students develop and interact

with visible 3D objects in the game world [20]. Using Java,

students can edit existing code, create new code, compile and run

 UCT 20 April 2019, Cape Town, South Africa

their code and have direct feedback in the form of compilation

errors or, in the case of the code being correct, have the changes

appear in the game. The problem with this approach is that it barely

differs from traditional coding assignments and simply adds a

visualization to the students completed code.

5. GAME GENERATION

Previous approaches to automated game generation have focused

on hand-designed game-specific mechanics and generating content

for fixed sets of hard-coded mechanics. As a result, most prior work

on game generation revolves around selecting and assembling

components from human provided knowledge and content [3].

Game generation can be very useful especially for generating

problems because most of the time, the output will be unique and

have a unique solution. This puts emphasis on the understanding of

the core concept used to solve these problems as opposed to

memorization of the process. This can be particularly useful when

assigning generated problems to learners as generally no two

learners will have the same problem at hand. Of course, this

depends on the complexity of the game generation algorithm and

input parameters.

A prime example of a game generation tool is Game-o-matic [17],

which creates games that represent real life ideas. It makes use of

an input map system and networks of nouns connected by verbs to

generate a game with simple arcade mechanics.

A game generation tool would require various input parameters that

will limit the complexity of the game level generated. In the context

of generating a game to teach recursion, the aim is to develop a tool

which, given input specifications, will generate a level or maze-like

problem that the player will need to solve or navigate using

recursive thinking and a recursive solution.

5.1 MAZE GENERATION

There are two basic ways to generate mazes. Algorithmic and non-

algorithmic. Algorithmic methods create mazes according to a

predefined step order. One or more steps need to be randomized.

That is, the function which decides the step needs to return a

random result. Graph based maze generation algorithms create

mazes by building a spanning tree. The end of this process

generates a spanning tree corresponding to the maze created.

Kruskal’s algorithm and Prim’s algorithm are examples of these.

The size and shape of the maze should also be taken into account

and can be specified as an input parameter when generating the

maze.

6. DISCUSSION

It’s clear that games and gamification in education is the way to go

when it comes to promoting learning content and maintaining

enthusiasm and interest. Visualization is the key factor in engaging

the learners with the abstract concepts taught. There are many

examples of teaching programming using games and visualization

and we know that they are useful for engaging students in the

material but it’s interesting that recursion, a challenging topic,

hasn’t really been attempted to be gamified or incorporated into a

game where the payoff for achieving this could be huge. Recursion

is often taught in the early stages of CS education and provides a

basis for more challenging topics, thus it’s very important that

students are able to easily understand it. This also promotes the

retention of students in the field and will likely improve pass rates.

There appears to be two approaches to this problem. The first

approach involves a hands-on approach from the student where

they are expected to write recursive code in order to solve a specific

problem, maze or puzzle. An example of this is the game

“EleMental: The Recurrence” [25]. In EleMental, a code editor is

provided as well as a simulated game world that visualizes the

execution of the written code. The player is expected to edit the pre-

written code in order to traverse a tree in game. The problem with

this approach is that it puts too much emphasis on the written code

and not so much the game itself. You aren’t actually playing the

game, rather watching the execution of your program visually. The

other approach involves providing recursive code for the student to

understand and be able to implement in a game environment such

as a maze or puzzle. The player would be expected to control a

character in the game world and solve the maze or puzzle using

movement controls of some kind in order to match the execution of

the pre-written recursive code. The latter approach is more game-

focused and involves more playability where the former is more

technical. A balance between these approaches needs to be found

where playability is present but the game isn’t completely abstract

and far removed from what would be expected from students in the

real world.

7. SUMMARY

There is a clear need for alternative methods of teaching in the

computer science field. Lectures are the current standard but there

are more ways of engaging students in learning material.

Although we know gamification is the way to go when it comes to

education, we aren’t quite there yet and there are many topics that

haven’t been explored in a gaming context. Recursion being one

of them. Recursion, being one of the first concepts students learn

in the early parts of any CS course, is a prime target for

gamification as the understanding of it is extremely useful for

understanding more advanced topics taught later. There is a

distinct lack of research in this area. Teaching programming using

games has been proven to be beneficial so the question remains

why recursion as a concept does not have enough research done in

teaching it using games or incorporating game elements into the

teaching process. This literature review aimed to point out that

there is a lack of research in this area and where there is, it’s not

very good or in depth.

We need to find better ways of teaching this challenging topic and

a game seems to be the best way of doing so. We know games

resonate with students and greatly enhance the learning

experience so it seems like a good start. Of course a single game

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

is not going to be the entire solution to the difficulties students

face with this concept, but the benefits for designing a game that’s

enjoyable and promotes the learning of the concept can have great

advantages for students and educators in and out of the classroom.

REFERENCES
1. Wirth, M.: Introducing Recursion by Parking Cars. SIGCSE Bulletin

40(4), 52–55 (2008)

2. Edgington, J.: Teaching and Viewing Recursion as Delegation. J.

Computing Sciences in Colleges 23(1), 241–246 (2007)

3. Tessler, J., Beth, B., Lin, C.: Using Cargo-Bot to Provide

Contextualized Learning of Recursion.

In: Proceedings ICER 2013, San Diego, pp. 161–168. ACM (2013)

4. Pirolli, P.L. and Anderson, J. R‘. The role of learning from examples in

the acquisition of recursive programming skills. Canadian Journal of

Psychology 39 (1985), 240-272.

5. Kurland, D. M. and Pea, R. D. Children’s mental models of recursive

LOGO programs. In Proceedings of the 5th Annual Conference of the

Cognitive Science Society (1983), Session 4,,1-5.

6. Dale, N. B., & Weems, C. Pascal (3rd ea.). Lexington, MA: D. C.

Heath, 1991.

7. Greer, J. E. Empirical Comparison of Techniques for Teaching

Recursion in Introductory Computer Science. Ph.D. dissertation, The

University of Texas at Austin, 1987.

8. Aho, A. V. and Ullman, !. D. Foundations of computer Science. W. H:

Freeman and Company, New York, NY,1992.

9. The role of learning from examples in the acquisition of recursive

programming skills. Pirolli, P.L. and Anderson, J. R‘. 1985.

10. Tamarisk Lurlyn Scholtz and Ian Sanders. Mental models of recursion:

Investigating students’ understanding of recursion. In Proceedings of the

Fifteenth Annual Conference on Innovation and Technology in

Computer Science Education, ITiCSE ’10, pages 103–107, New York,

NY, USA, 2010. ACM.

11. Vegso, J, Drop in CS Bachelor’s Degree Production. Computing

Research News, Vol 18, No 2, March 2006,

12. Cooper, S., Dann, W., Pausch, R., Teaching Objects-first In

Introductory Computer Science, In Proc. SIGCSE 2003, Reno, Nevada,

USA, 2003

13. Peppler, K. & Kafai, Y. B., Collaboration, Computation, and Creativity:

Media Arts Practices in Urban Youth Culture. In C. Hmelo- Silver & A.

O'Donnell (Eds.), In Proc. Computer Supported Collaborative Learning,

New Brunswick, NJ, USA, 2007

14. Repenning, A., Excuse me, I need better AI! Employing Collaborative

Diffusion to make Game AI Child's Play. In Proc. ACM SIGGRAPH

Video Game Symposium, Boston, MA, USA, ACM Press, 2006

15. The Gamification of learning and instruction: Game-based methods and

strategies for training and education, John W. Rice (Department of

Learning Technologies, University of North Texas, Denton, TX, USA)

16. Game-O-Matic: Generating Videogames that Represent Ideas Mike

Treanor, Bryan Blackford, Michael Mateas and Ian Bogost

17. Eagle, M., & Barnes, T. (2009). Experimental evaluation of an

educational game for improved learning in introductory computing.

ACM SIGCSE Bulletin, 2009, 321-325.

18. Kahney, H. and Eisenstadt, M., “Programmers’ mental Models of their

Programming Tasks: The Interaction of Real World Knowledge and

Programming Knowledge”, Proceedings of the Fourth Annual

Conference of the Cognitive Science Society, pp. 143-145, 1982.

19. BIERRE , KEVIN J. AND ANDREW M. PHELPS. The use of

MUPPETS in an introductory java programming course, SIGITE 2004,

October 28-30, 2004, Salt Lake City, UT, USA.

20. A serious game for developing computational thinking and learning

introductory computer programming. Cagin Kazimoglu, Mary Kiernan,

Liz Bacon, Lachlan Mackinnon 2012

21. Teaching Recursion in a Procedural Environment -

How much should we emphasize the Computing Model? David Ginat. Eyal

Shifroni

22. Do Algorithm Animations Assist Learning? An Empirical Study and

Analysis. John Stasko, Albert Badre. Clayton Lewis. 1993.

23. McCracken, D.D. Ruminations on Computer Science Curricula.

Communications of the ACM. 30, 1: (January 1987), 3-5.

24. EleMental: The Recurrence Andrew Hicks, Katelyn Doran, Graduate

Advisor: Amanda Chaffin, Mentor: Dr. Tiffany Barnes

25. Serious Games: Games that educate, train, and inform. David R.

Michael. Sandra L.Chen 2005

26. Are Just-In-Time Lectures Effective At Teaching? RB Dannenberg, P

Campell 1997

